#AI 程式設計
AI程式設計時代來了!馬斯克預言:年底不用再寫程式碼
馬斯克表示,AI將直接編寫二進制程式碼,且AI生成的二進制程式碼將比任何編譯器生成的都要高效。“到今年年底,我們甚至不再需要程式設計。”日前,馬斯克在一段發佈的視訊中如是說,AI將直接編寫二進制程式碼,且AI生成的二進制程式碼將比任何編譯器生成的都要高效。他預測,隨著AI技術的持續發展,人類對程式語言的依賴將會逐漸減弱。AI 系統可能自行完成從需求到可執行程序的整個工作流程,因此,程式設計將作為過時的中間步驟被時代拋棄,這將顯著縮短“從提出創意到執行落地”的距離。未來,程式設計這種職業或將不復存在。雖說馬斯克這番話引發了業內不少爭議,畢竟更多人更傾向於將AI看作“輔助”而不是“取代者”,但這番言論無疑為本就火熱的AI程式設計賽道又添了一把火。無獨有偶,近幾日國產AI的“春節檔”上新潮中,不少都瞄準了AI程式設計。例如字節2月14日更新的豆包2.0系列中,便包含Code模型,專為程式設計場景打造,強化程式碼庫解讀能力、提升應用生成能力、增強模型在Agent工作流中的糾錯能力;MiniMax 2月12日上線最新旗艦程式設計模型MiniMax M2.5,是全球首個為Agent場景原生設計的生產級模型,支援PC、App、跨端應用的全端程式設計開發;智譜在2月11日推出新一代旗艦模型GLM-5,內部評估顯示,其在前端、後端等程式設計開發場景中平均性能較上一代提升超20%;至於有望在春節期間亮相的DeepSeek V4,據媒體消息和機構報告顯示,程式設計能力或是其“王牌”。值得注意的是,Anthropic也在《2026年智能體編碼趨勢報告》中指出,傳統軟體開發的遊戲規則正在被徹底改寫。一個曾預計需要4到8個月的項目,使用Claude大模型後僅用兩周就完成。《報告》明確指出,程式設計師這一職業並不會消失,但那些“只會寫程式碼”的程式設計師將逐漸被市場淘汰。Anthropoic的Claude可以說是海外AI程式設計的龍頭。而在AI 賦能軟體開發各環節帶來效率提升較為明顯的情況下,以Claude 為代表的大模型和以Cursor為代表的IDE 工具營收快速增長,已體現出較好的商業化效果。廣發證券指出,與海外AI 輔助程式設計工具相比,國產AI 程式碼輔助工具產品具有兩個特點:一是呼叫國產AI 大模型的比例較高;二是儘管國產AI輔助程式設計工具在功能性上與Cursor 等海外產品有一定差距,但其使用價格相對更低、性價比更高。Grand View Horizon資料顯示,2024年全球AI 程式碼工具市場價值61億美元,預計到2030 年將達到260億美元,2024-2030年復合年增長率為27.1%。由於AI 程式設計直接作用於核心的開發環節,券商認為其有望成為最具價值的AI 應用之一。國聯民生證券認為,國內頭部開源大模型持續發力AI 程式設計,國內IDE 以及各類低程式碼平台有望明顯受益,依託頭部開源模型,IDE 及低程式碼平台的產品力有望持續提升,並加速在各個垂直細分領域的滲透以及企業級應用的落地,建議重點關注卓易資訊、普元資訊、金現代等公司。 (科創板日報)
GitHub 上,人類已經幹不過 AI 了
今年,GitHub 上,AI 提交量佔比將達到 20%如果幾年前有人跟碼農同學說,「你以後可能要和 AI 搶 GitHub 提交記錄了」,他大概會笑掉大牙。但現在,他可能完全笑不出來了。根據 SemiAnalysis 最新發佈的分析報告,Anthropic 的 Claude Code,目前已經貢獻了 GitHub 上 4% 的公開提交量,並且有望在 2026 年底:達到 20% 的日提交量。這不是一個簡單的數位遊戲。當一個 AI 工具開始在全球最大的程式碼託管平台上「刷存在感」,它實際上正在重新定義什麼叫「寫程式碼」。01. AI「霸榜」GitHub4% 看起來並不是個很大的數字,但可怕的是這個數字背後的意義。GitHub 每天的提交量是一個天文數字。全球數千萬程式設計師在這個平台上推送程式碼、修復 bug、發佈新功能。而現在,每 25 次提交中,就有 1 次來自 AI。Anthropic Claude Code 負責人 Boris Cherny 在 X 上毫不避諱地「炫耀」:他的團隊現在 100% 使用 Claude Code 寫程式碼,連小的編輯都不再手動操作。更誇張的是,他們用一周半時間就用 Claude Code 建構了 Cowork 應用。這種效率提升不是線性的,而是指數級的。但真正讓人震撼的不是速度,而是質量。一位企業使用者透露,他 80% 的時間在使用 Claude Code,剩下 20% 用其他工具。「我的公司為 Claude Code 付費,我甚至不看成本。」這句話很有意思——當一個工具好用到讓人「不看成本」,說明它創造的價值,已經遠超價格。曾有業內人士曾這樣評價 AI Coding 的優勢:「AI 能繞過官僚主義。如果猶豫不決會讓大型組織陷入癱瘓,AI 不在乎。它會愉快地生成一個版本 1。」這句話點出了 AI 程式設計的核心優勢——沒有包袱,沒有猶豫,沒有「完美主義焦慮」。02. 程式設計師的「存在危機」但硬幣總有兩面。在 Hacker News 上,一位使用者分享了他的挫敗感:「多次我希望程式碼看起來是某種樣子,但它不斷拉回到它想要做事情的方式... 最終,我發現不與它爭鬥、讓它按照它想要的方式做事情更容易。」這段話透露出一個微妙的權力轉移:從「人指導 AI」到「人適應 AI」。Every 公司 CEO Dan Shipper 在部落格中寫道:「我們正處於自主程式設計的新時代。你可以在不看一行程式碼的情況下建構令人驚嘆的複雜應用程式。」聽起來很美好,但這也意味著傳統意義上的「程式設計師」,正在消失。如果你不需要看程式碼就能建構應用,那「會寫程式碼」,還算是一種核心技能嗎?SemiAnalysis 的分析師預測,這個趨勢將推動 Anthropic 在 2026 年實現爆發性增長,甚至超越 OpenAI。相比之下,GitHub Copilot 和 Office Copilot 雖然領先了一年,但「幾乎沒有作為產品取得任何進展」。這個對比很殘酷,也很說明問題:在 AI 時代,先發優勢可能不如產品體驗重要。03. 重新定義「程式設計師」但程式設計師同學可能不需要過分焦慮,程式設計師這個崗位不會消失,只是這個職業的定義在改變。就像 Dan Shipper 說的,即使在 2025 年,「你仍然需要真正理解底層架構,也許你仍然需要去查看程式碼」。但這個「需要」的含義已經不同了。程式設計師正在從「程式碼編寫者」變成「AI 協調者」。你需要知道如何與 AI 對話,如何審查它的輸出,如何在它犯錯時糾正它。你需要理解系統架構,但不一定需要親自實現每一行程式碼。一位 Google 工程師的反思很有代表性:社區對 AI 程式設計能力的討論「緊張」,一方面驚嘆於能力的提升,另一方面擔心被替代。但他強調,領域專業知識仍然重要,原型和生產環境之間的差距仍然存在。當 AI 程式設計足夠便宜、足夠好用,整個軟體開發的經濟學都會改變。也許 20% 的 GitHub 提交量只是開始。也許幾年後,我們會看到 50%、80%,甚至更高的比例來自 AI。這未必意味末日,而是一個新開始。真正的程式設計師不會被 AI 替代,而會學會如何讓 AI 成為最強大的工具。就像計算器沒有讓數學家失業一樣,AI 也不會讓程式設計師失業——它只會讓那些拒絕進化的人失業。程式碼即是機器語言,是 AI 的母語,將機器語言交還給機器本身,人類用自然語言描述 Idea,看起來似乎是個更自然的結果。 (極客公園)
再見,程式設計師!馬斯克預言2026年AI改變世界,進入奇點之年!
不用多說,相信每個人的時間線全被Claude Code刷屏了。馬斯克甚至斷言,「我們已進入奇點!2026年就是奇點之年」。這幾天,Claude Code在全網掀起的陣仗可真不小。一睜眼,地球首富馬斯克重磅宣告:我們已進入奇點!起因竟是,Midjourney創始人公開稱,聖誕假期自己敲的程式碼,比過去十年加起來還要多,簡直太瘋狂。「雖然能感到侷限,但我知道一切都不再一樣了」。同一天,馬斯克不止一次,直接宣稱「2026年就是奇點之年」。這個點評同樣是對Claude Code的高度讚揚。如今,包括Anthropic之父、前DeepMind/OpenAI研究員、Google首席工程師等大佬在內,都為其感到震驚。馬斯克:2026,奇點降臨一直以來,奇點這一概念就像科幻詞一般的存在。雷·庫茲維爾曾在2005年《奇點臨近》一書中,預測道技術奇點大約發生在2045年。而在最新出版的《奇點更近》著作中,他再次重申奇點時間:仍是2045年。誰曾想,這個看似還很遙遠的時刻,一下子被拉到了現在——2026年。所謂的技術奇點,是指技術在長期內增長緩慢,但在某個臨界點急劇加速,呈指數式上升。能夠讓馬斯克有這麼深感觸,竟是Claude Code席捲全網的強大程式設計能力。一點也不誇張地說,2026年開年這局,身邊的人都瞬間成為了Claude Code使用者。生物醫學工程師Derya Unutmaz雖不是專業程式設計師,升級訂閱就是為了更頻繁使用Claude Code。就連xAI聯創Igor Babuschkin感慨道,「有些年頭風平浪靜,啥大事沒有,可有些星期卻濃縮了數十年的變遷」。一夜之間,Claude Code為何變得這麼強了?真正的「民間高手」:Claude Opus精準來說,不是它變強了,而是一直就很強。去年11月底,超大杯Claude Opus 4.5一出世,Anthropic便宣稱其是全球最頂尖的編碼模型。內部測試中,Opus 4.5+Claude Code聯動使用,平均效率暴增220%。當時,Anthropic工程師預言,也許就在2026年上半年,軟體工程就被終結了。如今看來,可能就在最近了。剛剛,在最新升級的LiveBench榜單上,Claude Opus 4.5登頂,直接碾壓GPT-5.1 Codex MAX、Gemini 3 Pro。創始人Bindu Reddy稱,在聖誕假期期間,團隊改進了LiveBench,為了防止AI刷分作弊。這個排名在很大程度上,反映了這些LLMs在現實世界中的表現。去年12月,METR的一份報告揭秘了,全球最能打的AI還是Claude Opus 4.5。它在自主編碼任務中,能夠連續5小時不崩,也是迄今為止公開的AI完成長程任務時間最長的模型。AI大佬Simon Willison表示,Opus 4.5和GPT-5.2就像是一個轉折點。「模型逐步跨越到了一個隱形能力界限的時刻,忽然間,大量的編碼難題都被解決了」。即便是程式設計0經驗的人,也能在不到十分鐘的時間,打造出一款功能齊全的網頁應用。就像網友所言,如果不出意外的話,Claude Code可能會讓更多人成為百萬富翁。人類的最後一次發明如果我們翻開哲學家戴維·查爾默斯(David J. Chalmers)那篇經典的《奇點:哲學分析》,會發現當下的瘋狂景象,不過是這套嚴密邏輯推演的必然兌現。論文地址:https://consc.net/papers/singularity.pdf在查爾默斯的推導模型中,我們正處於一個被稱為「擴展前提(Extension Premise)」的關鍵節點。他將這一過程量化為從AI到AI+再到AI++的階躍:AI:人類水平的人工智慧。AI+:超越人類最強大腦的智能。AI++:超級智能,其超越程度正如人類超越老鼠一般。正如查爾默斯引用的I.J. Good在1965年的那個著名論斷:「超智慧型手機器(Ultraintelligent Machine)將是人類需要製造的最後發明」。邏輯非常性感且冷酷:機器設計機器:既然設計機器本身是一種智力活動,那麼一台超越人類的機器(AI+),必然能設計出比人類所能設計的更好的機器。遞迴的雪崩:這台被AI+設計出的新機器,擁有更強的設計能力,它將設計出下一代更強的機器。無限逼近:只要這台機器能通過編寫程式碼來最佳化自身,我們將無可避免地迎來一場「智能爆炸」。我們現在看到的,正是查爾默斯所描述的「速度爆炸」與「智能爆炸」的完美合流。當模型開始比人類更擅長最佳化演算法時,我們就不再是處於一個線性的增長曲線上,而是站在了垂直牆面的底端。每個人都會成為軟體工程師奇點來臨的那一刻,世界會有什麼不同?Google工程師Vaibhav Agarwal稱,自己再也不用寫程式碼了,現在70%-80%程式碼都是AI寫的。而他的工作僅是「程式碼審查」,角色發生了根本性的轉變,具體是這麼做的:• 不再輸入語法,用提示詞(Prompt)來定義邏輯;• 不再費力找 bug,而是審查AI給出的修改建議;• 不再硬啃遺留程式碼,直接讓AI把它講明白。許多工程師對此感到內疚,覺得自己像是在「作弊」。實際上並不是,他們是在進化。Agarwal曾問過一位資深領導,關於一個所有人都害怕的問題:AI會取代我們嗎?他是這麼說的——AI是一個效率倍增器,而不是替代品。如果你過去每周完成1倍的工作量,現在預期則是,同一周內完成4倍的工作量。沒有任何一家公司希望倒退。如今,衡量「生產力」的標準已經被整體抬高了。如果你因為自稱是個「純粹主義者」而拒絕使用 AI,那並不高尚——你只是慢了。AI不會取代你。但一個借助AI、能完成4倍工作量的工程師……滿足網友的好奇,工程師用的是自家的GeminiHyperbolic創始人Yuchen Jin直言不諱,要是在讀博期間有這些強大工具助力,自己不用耗費5.5年,可能一年就畢業了。此前,奧特曼在採訪中還曾表示,「用不了多久,每個人都會成為軟體工程師」。他隨口拋出了一個關於未來工作方式和軟體世界的超級觀點,但很多人還沒意識到這件事有多重要。核心想法其實很簡單,自然語言,就是新的程式設計語法。程式設計師大軍終結,不需要龐大的開發團隊才能做出第一個版本。只需描述出需求,AI直接把它做出來。在複雜系統中,AI智能體會直接「住」在程式碼庫裡。它們會自己瀏覽repo、修復bug、補測試、重構程式碼,並自動提交修改。一旦軟體開發被自動化,同樣的邏輯也會蔓延到營運、規劃,甚至部分管理工作。程式碼,只是倒下的第一塊多米諾骨牌。如果這一切真的發生,「學會寫程式碼」本身就沒那麼重要了。 (王晶華說AI)
卡帕西"AI程式設計師論"刷屏,發佈一天,400萬人圍觀,年底大焦慮,傳統程式設計師已落後,程式設計本質徹底變了
AI大神卡帕西引爆程式設計師焦慮潮:程式設計職業遭遇“9級地震”,人類正在淪為AI的副駕駛?“作為一名程式設計師,我從未感到如此落後。”卡帕西今天在社交平台上的發言瞬間刷屏(不到1天,已經近500萬圍觀)。這位AI領域標誌性人物坦言,程式設計職業正在被徹底重構。他描述道,程式設計師的直接程式碼貢獻越來越稀疏。如今他感覺自己本可以強大10倍。卡帕西列出了一長串需要掌握的新概念:智能體、子智能體、提示詞、上下文、記憶、模式、權限、工具、外掛、技能、鉤子……卡帕西坦言,程式設計職業正在經歷一場“9級地震”。這位OpenAI前創始人、在特斯拉領導AI部門的大神級人物,突然發現自己“前所未有地落後”。“如果我能夠恰當地串聯起過去一年中出現的技術,我的能力本可以增強10倍,”卡帕西寫道,“但如果不能抓住這次升級機會,那絕對是一個技能問題。”在AI工具迅速發展的今天,純粹的技術知識和深度專業能力已不能保證行業領先地位。新的技術堆疊不再是關於理解Transformer架構或編寫優雅演算法。程式設計的本質正在發生深刻變化:從編寫確定性的程式碼,轉向協調一群無人能完全控制的隨機系統。卡帕西列舉了15個在18個月前甚至不存在的新程式設計“基元”:智能體、子智能體、提示詞、上下文、記憶、模式、權限、工具、外掛、技能、鉤子、MCP、LSP、斜槓命令、工作流、IDE整合。這些概念每一個都在以周為單位演化,程式設計師需要建立全新的心智模型來應對這個充滿不確定性的新世界。傳統工程提供的是確定性系統——編寫程式碼,它就嚴格按編寫的內容執行。而現在,程式設計師需要管理“本質上是隨機、易錯、難以理解且不斷變化” 的實體。卡帕西將其比喻為“沒有說明書的外星工具”。整個行業都在即時反向工程這些能力,文件總是過時,三個月前的最佳實踐現在可能已經錯誤。“卡帕西在年底前給整個網際網路帶來了一場存在主義焦慮症,”一位Google員工在轉發時寫道。輝達大神總結道:“2024年:AI是副駕駛;2025年後:人類是副駕駛。Copilot正成為一種新的工程技能。”離開駕駛員座位並不容易,我們必須學會以AI的方式思考,適應陌生的“外星”工作流程。幫助AI,就是幫助我們自己。但也有開發者持樂觀態度:“這是多年來成為開發者最有趣的時刻。AI工具尚不完美,模式仍在形成,有真正的實驗空間。挽起袖子,開始建造吧。”這位開發者補充說,地震正在進一步拓展可能性邊界。關於這個新抽象層最好的消息是:傳統工程技能比以往任何時候都更有價值,而不是貶值。早期在CI/CD、測試、文件和程式碼審查上投入的開發者,在使用AI工具方面最為成功。這些“無聊”的基礎設施成了加速器。它們將智能體從混亂生成器轉變為生產力倍增器。真正的機會在於學習在不同高度上工作。開發者不再需要逐行鍵入語法,而是審查實現、捕捉邊界情況,並在幾小時內完成過去需要數天的功能開發。這確實令人興奮。學習曲線確實存在。理解如何提供上下文、迭代計畫並快速審查AI生成的程式碼需要實踐,但這是可以通過實踐學習的。“人類成為AI副駕駛”的觀念正在技術圈蔓延。這種角色轉換標誌著程式設計工作本質的根本性變革。面對這個新抽象層,傳統工程技能實際上變得更加重要。它們幫助我們最大程度減少交付低品質程式碼的可能性。已經投資於CI/CD、測試、文件和程式碼審查的開發者在使用AI工具方面最為成功。這些“枯燥”的基礎成為了加速器。真正的機會在於學習在不同的高度工作,從輸入語法轉向審查實現、捕獲邊界情況,並在數小時內完成過去需要數天的工作。面對卡帕西描述的程式設計職業“9級地震”,開發者應該如何應對?學習如何提供上下文、迭代計畫並快速審查AI生成的程式碼需要實踐,但這可以通過實際操作掌握——建構小工具、審查所有內容,通過重複培養直覺。當我們將AI的速度與工程判斷力結合時,倍增潛力是真實的。我們不是在取代程式設計技能,而是終於能夠將精力集中在有趣的問題上,同時將繁瑣的部分委託出去。地震已經發生,餘震成為新常態。卡帕西的警示提醒整個行業:要麼挽起袖子跟上,要麼被迅速拋在後面。這位AI先驅的“落後感”並非弱點展示,而是行業劇變的明確訊號。程式設計職業的重構已在進行中,新的抽象層正在形成,而每個人都在尋找掌握這個“外星工具”的方法。地震之後,餘震成為新常態。在程式設計這個曾經被確定性統治的領域,隨機性、不可預測性和持續變化正成為日常。 (三次方AIRX)
拳打谷歌,腳踢 Claude?我用 9.9 元的國產模型寫了個遊戲,結果直接沉默了
這兩周,AI 程式設計圈簡直捲出了天際。前腳Google剛發完新模型,後腳 Claude 就跟進大招。很多人為了嘗鮮,還在折騰各種“魔法”,費盡周折去申請那些國外的帳號。但大部分人都沒意識到,其實真正的“版本答案”根本不需要翻山越嶺,就在我們家門口。01| 唯一的中國獨苗,殺瘋了我們不看跑分,直接看看全球最大的模型聚合平台——OpenRouter 上的實戰資料。這可是被稱為 AI 界的“照妖鏡”。結果一看,直接給我整沉默了:圖:MiniMax M2 在 OpenRouter 程式設計分類的排名好傢伙,在一眾中美巨頭壟斷的 AI 程式設計模型 Top 5 榜單裡,中國獨苗只有這一家:MiniMax M2。不僅是上榜,它的實戰熱度更是嚇人。根據統計,M2 的 Token 呼叫量穩居全球前五,高峰期甚至一度飆升到了全球第三,直接跟在Claude Sonnet 4.5 和 Gemini Flash 後面貼身肉搏。圖:MiniMax M2 Token 量排名這意味著什麼?意味著在全球範圍內,已經有無數程式設計師用腳投票,認可了它的實力。02|價格屠夫:9.9元把門檻踩碎如果說排名只是讓我驚訝,那看到價格的時候,我就是震驚了。M2 的價格直接打到了競品 Claude 的 8%。 注意,這不是打折,這是打骨折。前兩周,他們又搞了個大動作——基礎版首月只要 9.9 元 。你沒聽錯,一杯瑞幸的錢(甚至還買不到生椰拿鐵),就能讓你“雇”到一個全球 Top 5 等級的 AI 程式設計師,而且是包月、不限速。不僅如此,它的每款套餐價格都是吊打 Claude:圖:MiniMax M2 套餐對比這就不僅僅是“真香”了,這是直接把 AI 程式設計的門檻給踩碎了。作為經常測評各種工具的博主,我必須替大家驗證一個問題:這 9.9 元,到底是“智商稅”,還是普通人逆襲的神器?03|極限實測: 它真能幹活嗎?光說不練假把式。我準備了兩個我們日常最頭疼的場景,看看它能不能接得住招。挑戰一:復刻殺時間神器“2048”午休無聊想摸魚?貪吃蛇玩膩了?我決定讓 M2 給我手搓一個經典的“數字毒藥”——2048。看看它能不能搞定那個複雜的合併演算法。我的指令 (Prompt):請幫我用 HTML + CSS + JS 復刻經典遊戲 2048。具體要求:介面:經典的 4x4 網格,背景要暖色調(米色/淺黃)。核心邏輯:使用鍵盤方向鍵或手機滑動控制數字移動。相同的數字碰撞時合併翻倍(2+2=4,4+4=8),並有平滑的移動動畫。樣式:不同的數字(2, 4, 8... 2048)要有明顯的顏色區分,數字越大顏色越深。計分:頂部即時顯示當前分數和歷史最高分。一個指令下去,整個過程我只需要一路狂按回車。不到 3 分鐘,神奇的事情發生了:圖:MiniMax M2 遊戲生成過程(加速版)這個過程非常有意思,M2 會先思考遊戲的邏輯,然後一步步的把遊戲寫出來。它甚至能自己更新自己寫過的程式碼。圖:MiniMax M2 自動修復更新程式碼M2 甚至展現出了一種“老程式設計師”的素養:它不僅寫了程式碼,還自己開了個 HTTP Server 跑了一遍測試,順手把 Bug 給修了。這不僅是把開發的活幹了,連維運的活也包圓了。圖:MiniMax M2 自動開啟 HTTPServer 並測試都結束之後,我打開這個遊戲,簡直和原版一模一樣。打開遊戲,按下方向鍵,數字塊“刷刷”地滑動、合併,那個絲滑的動畫效果,完全不像是一個 AI 在兩分鐘內寫出來的“草稿”。邏輯類的“滿分作業”。如果你想做個小工具、小遊戲,它完全夠用。圖:MiniMax M2 生成的 2048 遊戲挑戰二:無中生有做資料分析之前很多想學資料分析的朋友跟我抱怨:“我想學,但手頭沒有資料啊!”其實,這也難不倒 M2。我給它出了個難題:兩步走,先造假(模擬)資料,再做高級圖表。第一步:無中生有(造資料)請幫我寫一個 Python 指令碼,隨機生成一份包含 2000 條記錄的‘奶茶店銷售資料.csv’。欄位要豐富,包含:訂單號、下單時間(精確到分鐘)、使用者性別、奶茶口味(5種)、甜度(無糖/三分/半糖/全糖)、會員等級(普通/VIP)、訂單金額。直接運行這個指令碼,幫我生成檔案。M2 二話不說,呼叫 Python 指令碼瞬間生成了一份極其逼真的 CSV 檔案。第二步:全自動分析(出炫酷圖表)現在,讀取剛才生成的 CSV 檔案,幫我用 Plotly 庫生成一個高級互動式 Dashboard,包含以下圖表:銷售熱力圖 (Heatmap):橫軸是‘星期幾’,縱軸是‘小時’,顏色深淺代表銷量。我要一眼看出那天那個點最忙。使用者偏好桑基圖 (Sankey):展示‘使用者性別 -> 會員等級 -> 甜度偏好’的流動關係。客單價箱線圖 (Box Plot):對比 VIP 會員和普通使用者的消費金額分佈。洞察:根據圖表,自動總結出 3 條行銷建議。出圖的過程更加複雜一點,因為遇到一些畫圖模組沒有,不過不用擔心,它完全自動的給裝上了。圖:MiniMax M2自動解決依賴庫問題這其實是一個非常爽的過程,寫過程式碼的人都知道,安裝各種依賴庫簡直會讓人吐血。震撼結果:這是真正的“自產自銷”。 M2 先是用 Python 的 faker 庫給我捏造了一份極其逼真的資料。緊接著,它生成的 Dashboard 簡直絕了:圖: MiniMax M2 生成的資料分析圖那個熱力圖,一眼就看出來,基本上每天下午 4-5 點顏色最深(摸魚喝奶茶高峰期)。圖:MiniMax M2 生成的資料分析圖最神的是那個桑基圖,你能清晰地看到“女生 VIP 使用者基本都流向了“無糖/半糖”,看來美女都怕糖是真的!圖: MiniMax M2 生成的資料分析圖以後別再說沒資料練手了。9.9元,你不僅有了分析師,連“資料造假...啊不,資料模擬”的活兒它都包圓了。這種圖以前我得調半天程式碼,現在 M2 一分鐘出圖。04|速度快到飛起天下武功,唯快不破。程式設計這個場景,速度是個關鍵指標,對程式設計的體驗影響也非常大,也直接影響到開發效率。我看了一下 OpenRouter 上資料,這個 M2 簡直是離譜,它的 TPS(每秒輸出 Token 數)基本上是 Claude Opus/Sonnet 4.5 的兩倍。比 Gemini 3 Pro 也高了近 50%!圖:MiniMax M2 速度對比另外,M2 已正式支援圖像理解、聯網搜尋 MCP。05|怎麼用?M2 的接入非常簡單、絲滑。MiniMax 做了 API 生態的全面適配,支援Anthropic 和 OpenAI 兩種標準格式。不管你是用現在的網紅編輯器 Cursor、Claude Code,還是其他的 AI 工具,它基本都能無縫接入。只要三步,就能用上了。第一步:先訂閱一個套餐:https://platform.minimaxi.com/subscribe/coding-plan選擇一個適合自己的檔位,比如我選擇了只需要 9 塊 9 的 Starter,然後下單。第二步:獲取 API Key訂閱成功後,平台會給你生成一個 Coding Plan 專用的 API Key。複製就好了。圖:MiniMax M2 API 介面第三步: 打開你常用的 AI 程式設計工具,把 Key 填進去。在 Claude Code 裡面設定比較簡單,在配置檔案~/.claude/settings.json設定這些參數即可:{"env":{"ANTHROPIC_BASE_URL":"https://api.minimaxi.com/anthropic","ANTHROPIC_AUTH_TOKEN":"","API_TIMEOUT_MS":"3000000","CLAUDE_CODE_DISABLE_NONESSENTIAL_TRAFFIC":1,"ANTHROPIC_MODEL":"MiniMax-M2","ANTHROPIC_SMALL_FAST_MODEL":"MiniMax-M2","ANTHROPIC_DEFAULT_SONNET_MODEL":"MiniMax-M2","ANTHROPIC_DEFAULT_OPUS_MODEL":"MiniMax-M2","ANTHROPIC_DEFAULT_HAIKU_MODEL":"MiniMax-M2"}}當然,這裡的MINIMAX_API_KEY要換成你自己的。圖:配置 Claude Code配置完之後,你就擁有了一個24小時待命、不喝咖啡、不發脾氣、還巨便宜的頂級程式設計師助手。最後說兩句MiniMax 搞 9.9 元 ,是不是在卷價格戰? 是,肯定有商業考量。但作為使用者,我感謝這種“卷”。兩年前,為了用好一點的模型,我們得當“網路難民”,忍受高價和封號。但 2025 年,世道變了。國產模型不再是無奈的“備胎”,而是好用且便宜的主力。當算力門檻降到 9.9 元 時,這就叫“技術平權”。所以,真誠建議大家:別光在岸上看,跳下去試試。萬一,它真幫你把心底那個 App 的夢做出來了呢?騰出時間,去造夢吧。程式碼的事,交給 AI。 (AI范兒)
Rust頂級大神遭裁撤無奈發帖求飯碗,AI搶走了預算資源!後續:找到新工作了,首周自學GPU程式設計,Rust就業不好說,新軟體時代
“AI 在科技界吸走了大量資金和注意力,留給其他方向的資源就少了。”距離在網上無奈發帖表示“將被裁掉求飯碗”整整兩個月後,RustTop5級的核心貢獻者 Nicholas Nethercote 昨天終於對外宣佈找到了新工作。這一事件引起了整個程式設計圈乃至科技行業的關注。Rust 近些年一直被全球各大巨頭所追捧,但隨著大模型時代的開啟,AI 的光環日益壯大,就連 Rust 這位昔日寵兒的預算和資源,都被搶奪去了。Rust 真的陷入困境了嗎?求職環境真的有這麼糟糕嗎?真的如外界所傳:3000+行核心程式碼提交比不上一位OpenAI工程師嗎?本文,或許可以幫各位還原一下事情的真相。發帖“求飯碗”的RustTop5貢獻大神近幾個月來,Rust 社區並不平靜。小編是從一位頂級Rust大神無奈發“求飯碗”的帖子最先得知的。在過去的 3.75 年裡,我有幸在 Futurewei 的 Rust 團隊工作,在這裡我幾乎可以自由地以自己認為合適的方式去“讓 Rust 變得更好”。這是我職業生涯中最精彩的階段,我非常感謝 Sid Askary 以及其他 Futurewei 的同事,是他們幫助這一切發生。不幸的是,這份工作很快就要結束了;由於預算削減,團隊正在被縮減。我不清楚背後的詳細原因,但我懷疑主要有兩個: (a) 國際政治與經濟動盪,(b) 人工智慧在科技界吸走了大量資金和注意力,留給其他方向的資源就少了。小編備註:Futurewei 是華為在美國資助的一個 Rust 研發團隊,主要做編譯器、性能最佳化和基礎設施改進的工作。隨後,Reddit上有一位知情的網友爆料,兩位知名的核心貢獻者 Nicholas Nethercote 和 Michael Goulet 不得不公開發佈消息稱他們正在“尋找工作”。而對於這次無奈之舉,Nicholas 在求職帖上透露了原因:Futurewei 的 Rust 團隊因預算削減而縮減規模,他的職位即將被裁撤。不過,由於此事引發關注,他後來在 Mastodon 上澄清道:“我暫時還在 Futurewei 工作”,但離開似乎只是時間問題。”至於為什麼會裁撤?他猜測原因可能除了國際地緣環境因素以外,還有一個不得忽視的事實:人工智慧吸走了科技行業大量資金和關注,從而減少了用於 Rust 等基礎項目的資源。程式設計圈內的天花板,讓Rust編譯變快的男人先來介紹下這位大神。Nicholas 是 Rust 項目的核心貢獻者。去年,他正式成為編譯器團隊成員(regular contributor),同時也是一名 maintainer,負責方向把控與技術決策。他個人背景也非常厲害,劍橋大學博士學位,是著名動態分析工具 Valgrind 的作者之一。如今,Valgrind 已成為記憶體偵錯與性能分析的經典工具。憑藉在 Valgrind 上的研究,他還獲得了程式語言與編譯器領域的最高榮譽之一——PLDI Test of Time Award。雖然他加入Rust項目時間不是很長,但他在 Rust 社區的活躍程度簡直堪稱天花板等級,被業內稱為 “讓 Rust 編譯器變快的人”。光是在 Rust 項目中,他就提交了 3,375 次 commit,而在 Firefox 項目中更是超過 4,000 次。Rust 編譯器的 compiler/ 目錄中有超過 70 萬行程式碼,Nicholas 說自己“幾乎看過裡面的每一個檔案;並且在 77 個 crate 中的 75 個提交過程式碼”。更令人欽佩的是,他不僅專注性能最佳化,還主導了大量 技術債清理:重構錯誤報告 API、移除遺留特性、簡化資料流分析、統一程式碼風格……這些工作常常繁瑣,卻對 可維護性與工程質量 的提升至關重要。他甚至自嘲,在自己 3000 多次提交裡,出現頻率最高的詞是 “Remove”。在程式語言與系統軟體的專業圈子裡,絕對是一個封神的存在(即便不是斗帝,至少是斗聖巔峰等級)。AI搶走了Rust專家的預算“3000 個核心提交抵不過一位 OpenAI 工程師。”許多網友對於這樣一位 Rust 編譯器開發的“頂尖人物”,竟然也要這樣自我推銷的事情感到震驚。會“呼叫 OpenAI API 並複製貼上 prompt”的 AI 工程師炙手可熱,而 提交了 3000+ 編譯器 commit 的 Rust 工程師卻要在 Mastodon 上發招聘帖。還有人忍不住拿當下的招聘環境開起了玩笑:典型的 HR 面試是這樣的:你會用 Cursor 嗎?你有呼叫 OpenAI API 並複製貼上結果的經驗嗎?你有安全合規經驗嗎?哦,不是 CVE —— 我們只關心 prompt injection 防護。抱歉,我們不碰編譯器;我們只提供 AI-first 的人崗匹配夢幻體驗。很遺憾,我們決定與另一位候選人繼續推進。這一幕多少有點諷刺味道,很難不讓人開始擔憂 Rust 的求職環境。一方面,Rust 曾經被譽為 C 語言的繼任者,憑藉“記憶體安全”的承諾迅速在瀏覽器和作業系統中站穩腳跟,贏得聲望。但隨著 AI 崛起,資本和研發資源被大規模吸走。但相比之下,Rust 雖然在底層工程中具有長期價值,卻難以像 AI 那樣展示出立竿見影的回報。甚至有網友想到了微軟之前裁員的做法:2個月前,他們剛剛解僱了15000名員工,用這筆錢來支付人工智慧的費用。大神履新澄清:別慌!Rust前景不錯現在搞 Rust,找工作已經恐怖到這個程度了嗎?就在昨天,大神意識到自己再不發帖,可能就會引起“Rust恐慌”了。終於,Nicholas 在個人播客中發帖,一來是告訴大家:我找到新工作了!二來,是想澄清:Rust發展的要比想像的還好!早在 7 月,我就寫過一篇文章,說自己在尋找新工作。之後遲遲沒有更新,引發了一些公開的猜測:是不是我找工作遇到了困難?如果是,那對 Rust 來說意味著什麼?又對整個科技行業的招聘狀況說明了什麼?等等。文章中,Nicholas 表示,一些網友關於自己找不到工作的境遇、以及對於Rust甚至整個科技行業招聘狀況的擔憂,其實是過於杞人憂天了。“這些猜測基本上都不靠譜!”原因有兩點:幾周前就決定入職了,只是還不太適合對外公佈;Rust已經有了非常廣泛的應用。第一,我幾周前就已經決定加入 VectorWare,只是花了一些時間處理相關檔案、等事情安排妥當,才到可以對外宣佈的程度。第二,我很幸運收到了大量來自潛在僱主的聯絡。至於這是否說明 Rust 工作機會很多,我不想下定論,因為我的 Rust 經驗和影響力比較特殊。但可以確定的是,這也證明 Rust 已經在非常廣泛的領域中被採用。關於第二點,Nicholas 還展開科普了一下:Rust 正在被從巨頭公司到小型創業團隊的各類組織廣泛使用。具體來說,Rust 已經被用於:作業系統、編譯器/直譯器、wasm、GPU 程式設計、量子計算、資料庫、資料分析、網路/雲/伺服器端、醫療、航天、國防、汽車、嵌入式、資訊安全、惡意軟體檢測、搜尋、形式化方法、CAD、開發工具、協作軟體、裝置管理、即時系統、預測市場、生物技術、身份驗證、文件生成、硬體模擬和軟體現代化。另外還有生成式 AI、加密貨幣/區塊鏈和演算法交易。儘管我明確說過不想做這些方向,但還是收到了相關的邀請。所以,大神認為,這真是一個非常振奮人心的訊號!“我原本就知道 Rust 發展得不錯,但沒想到已經好到這種程度。”那麼,最後大神究竟去那裡了呢?說歸說,但小編看到大神決定加入的新公司,卻發現就業市場就是如此真實。Nicholas 宣佈:自己將加入一家致力於用 Rust 改進 GPU 程式設計的創業公司 VectorWare。你看,最後還是拗不過 AI 的大潮流。只能說,Rust 不如 AI 火,也是一個很現實的事情!我很高興地宣佈,我加入了一家名為 VectorWare 的新創公司。目前官網還比較簡陋,但公司的目標是用 Rust 改進 GPU 程式設計的現狀。不過,這份新工作跟在 Futurewei 不一樣,不是全職工作,更多還是開源工作。一個好消息是,大神依舊會活躍在 Rust 社區,繼續擔任編譯器團隊成員和維護者!不像我上一份那樣是“全職投入到 Rust 編譯器開發”,但它仍然會涉及大量開源工作,一些 Rust 編譯器相關工作。同時,我會繼續擔任 Rust 編譯器團隊成員和維護者。有意思的是,大神還秀出自己入職第一周的最大成就:自學GPU程式設計,渲染出新公司的logo圖案!此外,我還將學習 GPU 程式設計,這是對我來說一個全新的領域。事實上,我在第一周最大的成就是寫了一段 Rust 程式碼,用 GPU 渲染出了公司的 logo。VectorWare 的 logo 由十二個大小不一、層層巢狀並相互重疊的三角形組成。每個三角形都有一個紅色頂點、一個綠色頂點和一個藍色頂點,組合在一起形成了一個風格化的 “VW”。軟體的新紀元已來!活到老,學到老。時刻保持對新技術的敏感並主動適應時代。Nicholas 大神可能就是這句話的又一個最佳註腳吧。小編還特地搜了一下這家創業公司的推特,發現是在8月剛剛註冊的。公司的官網,也誠如大神所說的:非常簡陋。但首頁的介紹,確非常激動人心。就讓小編把這段介紹當成文章的結尾吧,Rust 同樣在AI時代有著自己的機會!軟體的新紀元已來!我們正站在一個全新軟體產業的起點。技術的變革總是先緩慢醞釀,然後突然爆發。隨著新“殺手級應用”的推動,CPU 和 GPU 的地位發生了逆轉。為了競爭,CPU 不斷加入 GPU 的特性,而 GPU 也在加入 CPU 的特性,它們正在趨同。然而,軟體的步伐並沒有跟上。CPU 相關的軟體已經高度成熟、標準化,並為人熟悉;GPU 相關的軟體卻依舊原始、定製化且怪異。大多數程式設計師仍然將重心放在 CPU 上。但我們不是。我們正在建構第一家 GPU 原生的軟體公司。我們在 rust-gpu 和 rust-cuda 上的工作只是起點,是達到目標的手段。我們會不斷交付、測試、迭代,直到寫 GPU 程序像寫 CPU 程序一樣稀鬆平常。而在那之後,非凡的成果自然會隨之而來。如果你能感受到腳下大地的震動,就加入我們吧。帶著信念,帶著品味,帶著緊迫感。軟體的新紀元已經到來。好了,文章到這裡結束了。生成式AI 可以說完全把原有的世界,打得一個猝不及防,即便是天花板級的大神也不例外。問題在於,我們如何在這場混亂中尋找機會。共勉!或許,GPU原生的軟體時代,不再只是一個口號~ (51CTO技術堆疊)
輝達拋棄 FLOPS:晶片價值改寫為 Token 經濟
9 月 10 日,輝達宣佈將在 2026 年底前推出全新人工智慧晶片 Rubin CPX。這是 Blackwell 平台的繼任者,被定位為“視訊生成與 AI 程式設計”的專用加速晶片。與傳統 GPU 最大的不同在於,Rubin CPX 高度整合了視訊解碼、編碼與推理功能。過去,生成一小時視訊所需的處理量高達百萬級 token,遠超常規 GPU 的處理邊界。Rubin CPX 的設計目標,就是為這種指數級增長的算力需求提供 專用解決方案。更引人注目的是,輝達首次公開了經濟模型:向 Rubin CPX 系統投入1 億美元,最高可帶來 50 億美元 token 收入;硬體價值不再是一次性出貨,而是與 AI 應用的 token 消耗直接掛鉤。一|技術路徑的三步走1|算力邊界突破Rubin CPX 內建的視訊流水線將推理吞吐提升至 Blackwell 的 3–4 倍,面向1 小時視訊 ≈ 100 萬 token 的處理量做專門最佳化。2|系統級整合通過整合解碼、編碼、推理,CPX 取消了 CPU 與外部加速器之間的資料搬運,平均延遲縮短 40%–50%。3|能源效率提升在同等算力下,CPX 的能耗比常規 GPU 下降 30%–35%,這是視訊場景下能否規模化部署的關鍵。二|三個關鍵訊號🔍1|AI 視訊生成已成算力新高地視訊生成和 AI 程式設計是未來最消耗算力的兩大場景。視訊的處理量比文字/圖像高一個數量級,未來 AI 的增長曲線幾乎註定將在視訊領域展開。🔍2|資本邏輯正在轉向 token 維度過去,晶片的價值以 FLOPS 衡量。如今,Rubin CPX 把“投入產出比”直接對應到 token 消耗 = 現金流。這讓晶片廠商從硬體銷售變成持續的 token 分成,是資本市場更願意買單的模式。🔍 3|AI 晶片敘事全面升級輝達從 GPU 性能 → 雲算力租賃 → token 經濟回報,不斷迭代敘事。未來誰能承接更多的 token 消耗,誰就佔據 AI 基礎設施的制高點。三|市場觀察Rubin CPX 不只是一次硬體迭代,而是一次 商業邏輯的躍遷。它揭示了未來幾年晶片價值的核心:不再僅取決於算力極限;而在於 能否把 AI 應用的 token 消耗轉化為可見的現金流。換句話說,誰能把 token 經濟效應嵌入晶片,誰就有機會主導下一輪 AI 基建的資本溢價。四|資本市場的故事切換對投資者而言,這不僅是技術與商業模式的更新,更可能改變資本市場對輝達的估值框架。Rubin CPX 可能意味著輝達的收入模型,從過去的 一次性硬體銷售,逐步轉向 類訂閱的持續分成模式:硬體出貨只是起點,真正的價值在於 token 消耗帶來的長尾收益;這種模式讓輝達更像一家 “雲服務+軟體平台” 企業,而不是傳統半導體公司;對資本市場而言,這相當於從周期性硬體估值 轉向穩定現金流的 SaaS 估值,敘事天花板被再次抬高。這就是 Rubin CPX 背後更大的金融含義:輝達不只是在賣晶片,而是在賣“算力+現金流”的未來。一塊晶片,不止是算力的極限,而是現金流的起點。 (方到)
馬斯克入局AI程式設計!xAI新模型限時免費用:256K上下文,主打一個速度快
剛剛,馬斯克xAI加入Coding戰局:推出智能程式設計模型Grok Code Fast 1。Fast寫進名字裡,新模型主打的就是快速、經濟,且支援256K上下文,可在GitHub Copilot、Cursor、Cline、Kilo Code、Roo Code、opencode和Windsurf上使用,還限時7天免費!不僅性能比肩Claude Sonnet 4和GPT-5,價格更是只有它們的十分之一。已經有網友在Cursor上用Grok Code Fast 1製作了一個模擬戰鬥的小遊戲,可實現持續互動。目前,Grok Code Fast 1在ToyBench上的整體排名為第5名,僅次於GPT-5、Claude Opus 4、Gemini 2.5 Pro和DeepSeek Reasoner。近期,各家發佈的新產品可不少,讓人感嘆:AI發展太快了……能力如何?先來看一波網友實測。首先,第一感受就是確實快,思考時長基本在幾秒之內。在VS Code開源免費的擴展Cline中即可使用。還有人將Grok Code Fast 1加入到聊天機器人中,只需要簡單的prompt:展示真正優秀的pygame。就得到了如下隨機的多媒體效果,看上去也非常絲滑~不只遊戲模擬器,Grok Code Fast 1對UI設計也手拿把掐。在多指令下建構的時間晶體的細節展示也很到位。確實,不少體驗者都表示,這個新模型在指令遵循方面表現很優秀。看完實測案例,再來看看模型情況。兼具速度與性價比根據官方透露出的消息,Grok Code Fast 1從零開始搭建了全新的模型架構,使用專門的程式碼語料庫進行預訓練,並利用真實世界拉取請求與編碼任務資料進行微調。另外,還與GitHub Copilot、Cursor、Roo Code等平台深度合作,讓模型能夠在IDE中快速理解開發者指令,完成如grep、終端和檔案編輯等常用工具的使用。借助推理加速和提示快取最佳化,模型能在你還沒讀完思維流程第一段文字時,就已經執行了數十種工具呼叫。指令快取命中率更是超過90%,使用者體驗將會極度順暢,讓響應毫無卡頓的感覺。除了快,Grok Code Fast 1還具有很強的通用性,無論是TypeScript、Python、Java,還是Rust、C++、Go,它都可以輕鬆完成,從建立項目到點對點的bug修復,而無需人工監督。在內部基準測試SWE-Bench-Verified的完整子集上,grok-code-fast-1成績可達70.8%,在其餘一眾程式設計模型中,性能也處於較為領先的程度。除了傳統基準,測試過程中還額外加入了開發者主觀評估與自動化行為監控,確保模型快速可靠,滿足日常編碼任務。支援256K的上下文窗口,每分鐘最多請求數是480,每分鐘可處理約200萬token。對於日常高頻編碼使用者,這個價格可以說是相當友好了,在性能上也不輸其他程式設計模型。另外,官方也和Grok 4做了對比,Grok 4更適合單次問答類場景,如複雜概念解析或深度偵錯,需要事先提供充足上下文。而Grok Code Fast 1作為輕量級智能編碼模型,更適用於多步驟、工具呼叫密集的複雜自動化任務,是兼具速度和效率的AI程式碼助手。此次更新中,最亮眼的莫過於Grok Code Fast 1超高的性價比。每1M輸入tokens只需要0.2美元(折合人民幣約1.4元),輸出tokens需要1.5美元(約10.7元),快取呼叫tokens更是僅需0.02美元(約0.14元)。與Claude Sonnet 4和GPT-5相比,相當於是只有別人的10%。現在更是7天內可以免費使用……所以已經用過的朋友,快來說說馬斯克家的AI coding體驗夠不夠地道? (量子位)